
Towards Distributed Multi-agent Optimization
in a Stochastic Derivative-free Setting

Jeffrey Larson

Argonne National Laboratory

February 17, 2014



Background

2012: Ph.D. in Applied Mathematics from University of Colorado Denver

I Dissertation: Derivative-free Optimization of Noisy Functions

2012 - 2014: Postdoctoral Researcher, Department of Automatic Control,
KTH Royal Institute of Technology

Present: Postdoctoral Researcher, Mathematics and Computer Science,
Argonne National Laboratory

I Derivative-free Optimization

I Distributed Multi-agent Optimization

I Heavy-duty Vehicle Platooning

I Sports Scheduling

I Tiled QR Factorization

2 of 51.



Background

2012: Ph.D. in Applied Mathematics from University of Colorado Denver

I Dissertation: Derivative-free Optimization of Noisy Functions

2012 - 2014: Postdoctoral Researcher, Department of Automatic Control,
KTH Royal Institute of Technology

Present: Postdoctoral Researcher, Mathematics and Computer Science,
Argonne National Laboratory

I Derivative-free Optimization

I Distributed Multi-agent Optimization

I Heavy-duty Vehicle Platooning

I Sports Scheduling

I Tiled QR Factorization

2 of 51.



Contents

Stochastic Derivative-free Optimization
Common Approaches
Our Method
Outline of Convergence Proof
Numerical Results

Distributed Multi-agent Optimization
Common Approaches
Our Algorithm
Outline of Convergence Proof
Numerical Results

3 of 51.



Outline

Stochastic Derivative-free Optimization
Common Approaches
Our Method
Outline of Convergence Proof
Numerical Results

Distributed Multi-agent Optimization
Common Approaches
Our Algorithm
Outline of Convergence Proof
Numerical Results

4 of 51.



The Problem

We want to solve:
minimize

x∈Rn
f (x)

when ∇f (x) is unavailable and we only have access to noise-corrupted
function evaluations f̄ (x).

Such noise may be deterministic (e.g., from iterative methods) or
stochastic (e.g., from a Monte-Carlo process).

Model-based methods are one of the most popular methods when ∇f is
unavailable, and the only recourse when noise is deterministic.
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The Problem

We analyze the convergence of our method in the stochastic case:

f̄ (x) = f (x) + ε,

where ε is identically distributed with mean 0 and variance σ2 <∞.

This is equivalent to solving:

minimize
x

E
[
f̄ (x)

]
.
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Prototype
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Strongly Λ-poised Sets
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Example (Spall)

Courtesy NASA/JPL-Caltech
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Stochastic Approximation

Iterates usually have the form:

xk+1 = xk + akG (xk),

where

I G (xk) is a cheap, unbiased estimate for ∇f (xk)

I ak is a sequence of step sizes (specified by the user) satisfying:
∞∑

k=1

ak =∞ lim
k→∞

ak = 0

Algorithm performance depends significantly on sequence ak .
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Response Surface Methodology

I Developed by the experimental design community.

I Build models using a fixed pattern of points, for example, cubic,
spherical, or orthogonal designs among many others.

I Finding the design that constructs response surfaces approximating
the function without requiring excessive function evaluations can be
difficult for problems where the user has no prior expertise.
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Modifications to Existing Methods

Take a favorite method and repeatedly evaluate the function at points
of interest.
I Stochastic approximation modified by Dupuis, Simha (1991)
I Response surface methods modified by Chang et al. (2012)
I UOBYQA modified by Deng, Ferris (2006)
I Nelder-Mead modified by Tomick et al. (1995)
I DIRECT modified by Deng, Ferris (2007)

There are two downsides to such an approach:

1. Repeated sampling provides information about the noise ε, not f .

2. If the noise is deterministic, no information is gained.
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Overview

We therefore desire a method that

1. Adjusts the step size as it progresses

2. Does not use a fixed design of points

3. Does not repeatedly sample points

We’d like the class of possible models to be general.

13 of 51.



Overview

We therefore desire a method that

1. Adjusts the step size as it progresses

2. Does not use a fixed design of points

3. Does not repeatedly sample points

We’d like the class of possible models to be general.

13 of 51.



κ-fully Linear model

Definition
If f ∈ LC and ∃ a vector κ = (κef , κeg) of positive constants such that
I the error between the gradient of the model and the gradient of

the function satisfies

‖∇f (y)−∇m(y)‖ ≤ κeg∆ ∀y ∈ B(x ; ∆),

I the error between the model and the function satisfies

|f (y)−m(y)| ≤ κef ∆2 ∀y ∈ B(x ; ∆),

we say the model is κ-fully linear on B(x ; ∆).
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α-probabilistically κ-fully Linear model

Definition
Let κ = (κef , κeg) be a given vector of constants, and let α ∈ (0, 1).
Let B ⊂ Rn be given. A random model mk generated at the kth
iteration of an algorithm is α-probabilistically κ-fully linear on B if

P
(
mk is a κ-fully linear model of f on B

∣∣Fk−1
)
≥ α,

where Fk−1 denotes the realizations of all the random events for the
first k − 1 iterations.
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Regression Models can be α-prob. κ-fully Linear

Theorem
For a given x ∈ Rn, ∆ > 0, α ∈ (0, 1),
I Y ⊂ B(x ; ∆) is strongly Λ-poised,
I The noise present in f̄ is i.i.d. with mean 0, variance σ2 <∞,
I |Y | ≥ C/∆4,

Then there exist constants κ = (κef , κeg) (independent of ∆ and Y )
such that the linear model m regressing Y is α-probabilistically κ-fully
linear on B(x ; ∆).
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Measuring Progress

In traditional trust region methods, if xk + sk is the minimizer of mk ,
the success of moving from xk to xk + sk is measured by

ρk =
f (xk)− f (xk + sk)

mk(xk)−mk(xk + sk)

In the stochastic case, a similar calculation is not obvious.
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One Last Part
For our analysis, we need estimates of f (xk) and f (xk + sk) that are
slightly different than those provided by the model functions.

Let F 0
k and F s

k denote the sequence of estimates of f (xk) and
f (xk + sk).

We need to be able to construct estimates satisfying

P
[∣∣F 0

k − f (xk)
∣∣ > εmin

{
∆k ,∆

2
k

} ∣∣Fk−1
]
< θ

and P
[∣∣F s

k − f (xk + sk)
∣∣ > εmin

{
∆k ,∆

2
k

} ∣∣∣Fk−1

]
< θ,

for any ε > 0 and θ > 0.
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Algorithm 1: A trust region algorithm to minimize a stochastic function

Set k = 0;
Start
Build a α-probabilistically κ-fully linear model mk on B(xk ; ∆k);
Compute sk = arg min

s:‖xk−s‖≤∆k

mk(s);

if mk(sk)−mk(xk + sk) ≥ β∆k then

Calculate ρk =
F 0

k − F s
k

mk(xk)−mk(xk + sk)
;

if ρk ≥ η then
Calculate xk+1 = xk + sk ; ∆k+1 = γinc∆k ;

else
xk+1 = xk ; ∆k+1 = γdec∆k ;

end
else

xk+1 = xk ; ∆k+1 = γdec∆k ;
end
k = k + 1 and go to Start;



Convergence

Under what assumptions will our algorithm converge almost surely to a
first-order stationary point?

I Assumptions on f

I Assumptions on ε

I Assumptions on algorithmic constants
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Convergence

Assumption

On some set Ω ⊆ Rn containing all iterates visited by the algorithm,
I f is Lipschitz continuous
I ∇f is Lipschitz continuous
I f has bounded level sets

Assumption

The additive noise ε observed when computing f̄ is independent and
identically distributed with mean zero and bounded variance σ2.
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Convergence

Assumption

The constants α ∈ (0, 1), γdec ∈ (0, 1), and γinc > 1 satisfy

α ≥ max

1
2
, 1−

γinc−1
γinc

4
[
γinc−1
2γinc

+ 1−γdec
γdec

]
 ,

where
I α is the lower bound on the probability of having a κ-fully linear

model,
I γdec ∈ (0, 1) is the factor by which we decrease the trust region

radius,
I γinc > 1 is the factor by which the trust radius is increased.

If γinc = 2 and γdec = 0.5 → α ≥ 0.9
If γinc = 2 and γdec = 0.9 → α ≥ 0.65

22 of 51.



Convergence

Assumption

The constants α ∈ (0, 1), γdec ∈ (0, 1), and γinc > 1 satisfy

α ≥ max

1
2
, 1−

γinc−1
γinc

4
[
γinc−1
2γinc

+ 1−γdec
γdec

]
 ,

where
I α is the lower bound on the probability of having a κ-fully linear

model,
I γdec ∈ (0, 1) is the factor by which we decrease the trust region

radius,
I γinc > 1 is the factor by which the trust radius is increased.

If γinc = 2 and γdec = 0.5 → α ≥ 0.9
If γinc = 2 and γdec = 0.9 → α ≥ 0.65

22 of 51.



Proof Outline

Theorem
If the above assumptions are satisfied, our algorithm converges almost
surely to a first-order stationary point of f .

I Show the sequence of trust region radii ∆k → 0 almost surely.

I Show if ∆k ever falls below some constant multiple of the model
gradient, ∆k+1 > ∆k with high probability.

I Lastly, show that, the sequence of ratios{∥∥∇f (xk)
∥∥

∆k

}

is bounded above by a nonnegative supermartingale. Since every
nonnegative supermartingale converges almost surely, and ∆k → 0
almost surely, this implies

∥∥∇f (xk)
∥∥→ 0 almost surely.
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Prototype
I mk is a linear regression model on a sample set of (n + 1)Ck

sample points, where Ck is defined by

Ck =

⌈
k

1000

⌉ max
{

n + 1,
⌊

1
∆4

k

⌋}
n + 1

.

The sample set consists of Ck randomly rotated copies of the set

{xk , xk + ∆ke1, . . . , xk + ∆ken}
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I F 0
k = m0

k(xk), where m0
k is a linear regression model using Ck randomly
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The sample set consists of Ck randomly rotated copies of the set

{xk , xk + ∆ke1, . . . , xk + ∆ken}

I F s
k = ms

k(xk), where ms
k is a linear regression model using Ck randomly

rotated copies of the set
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Problem Set
53 problems of the form:

f (x) =

m∑
i=1

[(1 + σ)Fi (x)]2 ,

where σ ∼ U[−0.1, 0.1].

If S is the set of solvers to be compared on a suite of problems P, let
tp,s be the number of iterates required for solver s ∈ S on a problem
p ∈ P to find a function value satisfying:

f (x)− fL ≤ τ
(
f (x0)− fL

)
,

where fL is the best function value achieved by any s ∈ S .
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Problem Set
Comments

I We are using the true function value f , not the observed f̄ .
I Since the noise is stochastic, each solver is run 10 times per

problem.

If S is the set of solvers to be compared on a suite of problems P, let
tp,s be the number of iterates required for solver s ∈ S on a problem
p ∈ P to find a function value satisfying:

f (x)− fL ≤ τ
(
f (x0)− fL

)
,

where fL is the best function value achieved by any s ∈ S .
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Performance Profile

Then the performance profile of a solver s ∈ S is the following fraction:

ρs(φ) =
1
|P|

∣∣∣∣{p ∈ P :
tp,s

min {tp,s : s ∈ S} ≤ φ
}∣∣∣∣

I ρs(1): Fraction of P method s solves first.
I limφ→∞ ρs(φ): Fraction of P method s eventually solves.
I ρs(φ): Fraction of P method s solves in under φ times the

evaluations required for the best method.
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Performance Profile

We compare our prototype against Spall’s versions of Kiefer-Wolfowitz
and SPSA with step sizes as recommended in Sections 6.6 and 7.5.2 of
Spall (2003)

ak =
1

(k + 1 + A)0.602 ck =
1

(k + 1)0.101

where A is one tenth of the total budget of function evaluations.
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Performance Profile
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Another Problem Set
53 problems of the form:

f (x) = σp +

m∑
i=1

[Fi (x)]2 ,

where σp ∼ N
(
0, (0.1∆p)2

)
and ∆p =

∑
i

Fi (x0)−
∑

i

Fi (x∗).
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Further Information and Current Work

Preprint on Optimization Online

“Stochastic Derivative-free Optimization using a Trust Region
Framework”

Code
http://people.kth.se/∼jeffreyl/Stochastic/

I Generalizing results to ensure a practical algorithm converges.
I For example, not requiring α-probabilistically κ-fully linear models

every iteration.

I Smartly constructing α-probabilistically κ-fully linear models.
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Credit: RoboBees Project, Harvard University
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Problem Statement

minimize
x

E

[
N∑

i=1

f̄i (x)

]
subject to Ax ≤ b

x ∈ X

I Each agent has objective fi (x) which can only be observed with
additive noise f̄i (x) = fi (x) + ε

I Each fi is convex
I ε has zero mean and finite variance
I X is an is a nonempty, closed, convex subset of Rn
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Algorithm
Goal
Agents connected by a network cooperatively minimize the global objec-
tive though they only have knowledge of their individual objectives (and
shared information from the network).

I Aim: Distributed Multi-agent Derivative-free Optimization
I At iteration j , agent i builds a model mi

j using observed values of f̄i .
I Communicate where they are going to their neighbors in the

network.
I Take the information from their neighbors for iteration j + 1.

I Today: Distributed Multi-agent Optimization with Inexact
Subproblems
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Problem Statement

minimize
x

∑
i

fi (x)

minimize
x

∑
i

fi (xi )

subject to xi = xj ∀(i , j) ∈ E
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Problem Statement

minimize
x

f (x)

subject to Ax ≤ b

x ∈ X

or

minimize
x

f (x) + g(z)

subject to Ax + Bz = c
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Previous Methods
Lagrangian dual decomposition methods (Nedić, Ozdaglar, Johansson. . . )

I Challenge for using the dual when constructing models:

Primal Problem Dual Problem

Model of Primal Problem Dual of Model

Global

Local ??

Global

40 of 51.



Previous Methods
Primal Methods using Consensus (Tsitsiklis, Bertsekas)

I Can be quite slow

Iterates have the form:

xk+1
i =

N∑
j=1

wijxk
j − adk

i

where a is a step size, dk
i is an element of the subdifferential of fi at xk

i .

f (y k) ≤ f ∗ + aL2C1 +
NLBC2

k

N∑
j=1

∥∥x0
j

∥∥+
N

2ak

(
dist(y0,X ∗) + aL

)2
Nedić, Ozdaglar (2009)
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Previous Methods
Alternating Direction Method of Multipliers (ADMM)
I Developed in the 1970s (Hestenes, Powell, Eckstein)

I Roots in the 1950s (Dantzig, Wolfe, Benders)

I Equivalent or similar to many other algorithms

I Douglas-Rachford splitting
I Spingarn’s method of partial inverses
I Dykstra’s alternating projections
I Proximal methods
I Bregman iterative methods
I More. . .
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ADMM

minimize
x

f (x) + g(z)

subject to Ax + Bz = c
(1)

has augmented Lagrangian

Lρ(x , z , µ) = f (x) + g(z) + µT (Ax + Bz − c) +
ρ

2
‖Ax + Bz − c‖22

Algorithm 2: Traditional ADMM

Pick initial values z0, µ0, ρ;
for k = 0, 1, . . . do

xk+1 = argminx Lρ(x , zk , µk);
zk+1 = argminz Lρ(xk+1, z , µk);
µk+1 = µk + ρ

(
Axk+1 + Bzk+1 − c

)
;

end
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Previous inexact ADMM methods

Algorithm 3: Deng, Yin (2013) Generalized ADMM

Pick Q � 0 and symmetric P, z0, µ0, ρ;
for k = 0, 1, . . . do

xk+1 = argminx Lρ(x , zk , µk) + 1
2 (x − xk)P(x − xk);

zk+1 = argminz Lρ(xk+1, z , µk) + 1
2 (z − zk)Q(z − zk) ;

µk+1 = µk + ρ
(
Axk+1 + Bzk+1 − c

)
;

end

I Fixed matrices P and Q
I Still dealing with argminx f
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Our approach
Algorithm 4: Our modification of ADMM

Pick initial values z0, µ0, ρ;
for k = 0, 1, 2, . . . do

xk+1 =
argminx f (xk) +∇x f (xk)T (x − xk) + 1

2 (x − xk)T∇2
x f (xk)(x − xk)

+ (µk)T (Ax + Bzk − c) + ρ
2

∥∥Ax + Bzk − c
∥∥;

zk+1 = argminz Lρ(xk+1, z , µk);
µk+1 = µk + ρ

(
Axk+1 + Bzk+1 − c

)
;

end

Assumption

Assume f is convex and twice continuously differentiable in the region
of interest so ∇2f (xk) is well-defined.
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Convergence

Assumption

There exists a saddle point to problem (1). In other words, there exists
points x∗, z∗, µ∗ satisfying

∇zg(z∗) + BTµ∗ = 0

∇x f (x∗) + ATµ∗ = 0

Ax∗ + Bz∗ = c

Define ‖x‖2A = xTAx and

y ∗ =

 x∗

z∗

µ∗

 , y k =

 xk

zk

µk

 ,Hk =

∇2
x f (xk) + ρATA 0 0

0 ρI 0
0 0 1

ρ I


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Convergence

Lemma
Iterates generated by our algorithm satisfy∥∥y k − y ∗

∥∥2
Hk
−
∥∥y k+1 − y ∗

∥∥2
Hk
≥
∥∥xk − xk+1

∥∥2
(∇2

x f (xk )+ρAT A− 1
β
AT A)

+ (
1
ρ
− β)

∥∥µk − µk+1
∥∥2

for all β > 0.

I This shows y k converges to y ∗ if ∇2f (xk) � 0.
I This shows y k converges to some ȳ if ∇2f (xk) � 0.
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Example: General `1 Regularized Loss Minimization
Consider the problem

minimize l(x) + λ ‖x‖1

where l is any convex loss function. In ADDM form, we can write this:

minimize
x

l(x) + g(z)

subject to x − z = 0

where g(z) = ‖z‖1.

I Instead of solving the x-update exactly, solving the quadratic
approximation can be faster.
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Results

minimize
∑(

log
(
−bi (aT

i x)
))

+ λ ‖x‖1
where ai are rows in a feature matrix A and b is a response vector.

I Boyd’s exact minimization (for a large problem) takes a total of
4928 iterations (summing over all agents)

I Solving only a single Newton step takes 1700 iterations
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Concerns and Assumptions
Concerns
I Time varying network
I Asynchronous updates
I Delays in communication
I Nonconvex local objectives

Assumptions
I Constant network
I Synchronized updates
I No delays in communication
I Convex local objectives
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Thanks

Questions?

jeffreyl@kth.se
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